浅析不同类型及不同原因产生的裂缝的相应防裂措施

所属栏目:交通运输论文 发布日期:2013-02-28 09:33 热度:

  摘要:桥梁路面裂缝不仅影响板梁的受力性能,加速了钢筋的锈蚀,而且降低了桥梁的耐久性能。文章桥梁路面裂缝产生的原因,针对不同类型裂缝及不同原因产生的裂缝,提出了相应的防裂措施。

  关键词:桥梁裂缝,原因,防裂措施

  随着我国道路桥梁建设规模的不断扩大,在道路建设中,桥梁占据相当大的工作量,然而随之出现的质量问题也日益增多,桥梁工程的混凝土施工受施工条件的影响很大。混凝土结构裂缝的种类成因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。

  1桥梁路面裂缝产生原因分析

  1.1荷载引起的裂缝

  混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。

  直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:

  1)设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安垒系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。

  2)施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。

  3)使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。次应力裂缝是指由外荷载引起的次生应力产生裂缝。裂缝产生的原因有:在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。例如两桥拱脚设计时常用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝。

  1.2温度变化引起的裂缝

  混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混抗拉强度时即生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化主要因素有:

  1)年温差。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。我国年温差一般以一月和七月月平均温度的作为变化幅度。考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。

  2)日照。桥面板、主粱或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。

  3)骤然降温。突降大雨、冷空气侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。日照和骤然降温内力计算时可采用设计规范或参考实桥资料进行,混凝土弹性模量不考虑折减。

  4)水化热。出现在施工过程中,大体积混凝土(厚度超过2.0米)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。

  预制T梁之间横隔板安装时,支座预埋钢板与调平钢板焊接时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至350℃,混凝土构件也容易开裂。试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300℃后抗拉强度下降50%,抗压强度下降60%,光圆钢筋与混凝土的粘结力下降80%;由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。

  2桥面防裂措施

  2.1 加强桥梁设计工作

  为了满足现代社会的发展,如今设计的桥梁桥面宽度越来越大,造成桥梁结构的受力情况越来越复杂,因此,在桥梁工程设计时,应对桥梁结构的箱型梁进行整体性分析以及刚度变化分析,同时对支座附近一定范围内的箱型梁还应进行抗弯分析和抗扭叠加分析以及必要的验算,适当增加构造配筋。在桥梁运行过程中路面横向不对称荷载可能为最不利荷载,因此,在桥梁设计时应考虑在这种荷载作用下箱型梁的受力情况,同时还应充分考虑各种荷载作用下对桥梁结构进行应力分析,且还应验算和复核,并应通过试验验证设计正确后才能施工。桥面配筋的布置设计应充分考虑到施工的方便,即便于制作和安装,以确保施工质量,使桥梁实际受力情况和设计相符合,防止裂缝的出现,延长桥梁结构的使用寿命。

  2.2 加强施工质量控制

  施工质量在很大程度上决定了桥梁工程质量的好坏,在施工阶段应加强以下几个方面的工作,能有效地防止裂缝的产生。1)重视和加强现场施工管理,建立完善的管理体制,提高管理水平;2)严把原材料质量关。应选择合格的原材料,同时尽可能选择强度较高、收缩小、耐磨和抗冻性能好的水泥。碎石应选用地质坚硬、表面洁净、级配良好的碎石。混凝土搅拌和养护用水应清洁干净,符合要求的水;3)优选配合比,严格按配合比施工。混凝土配合比设计对桥面裂缝的影响很大,因此,施工前应进行多组对比试验,得出最佳配合比。依据构件要求,选择合理的配合比,不同配合比应采取不同的施工程序,以保证施工质量、混凝土强度,提高构件强度的均匀性和构件的耐久性;4)合理选择施工时间。在温差较大的季节和炎热天气时,要避免中午高温施工,而应选择下午或夜间施工,以免出现温度裂缝;5)严格控制桥面铺装层施工质量。桥面铺装层施工质量对桥面裂缝的影响极大,水灰比和含砂率是控制桥面铺装质量的主要因素,因应合理设计两者;6)安装钢筋网时,可利用短钢筋头支撑钢筋网,以防施工时钢筋网走位或踩压至底层,否则将会降低上部分布筋的承载能力,当出现负弯矩时,容易导致桥面出现裂缝;7)严格、认真地抓好每一道工序的施工质量,结合实际施工情况,选择合理的施工工期,安排好施工程序。

  2.3 重视桥梁桥面薄弱部位的加强设计

  1)加强预制架设的板梁和桥面铺装层的连接。因预制板梁和桥面铺装层混凝土浇筑时间不同,所以混凝土龄期也不同。为了确保两者之间连接的整体性,设计时应考虑将板梁内的钢筋伸入到铺装层中,或施工时设置竖向锚固钢筋,这样能很好地改善桥面的受力状况,能够有效地防止裂缝;

  2)加强板梁之间纵向缝隙的联系。预制空心板梁之间的连接为铰结,致使桥面极易出现裂缝。因此,在设计时应对该部位进行加强。桥面混凝土一次铺装时,应在板两端预留钢筋。若为两次铺装时,应在板梁上整体现浇层内设Ф12钢筋,以加强各板间的连接,提高结构的整体性能。

  4结束语

  桥梁在建成并运行一段时间后桥面易出现裂缝,给车辆的运行和桥梁的维修带来诸多不便。混凝土结构裂缝的种类成因复杂而繁多,甚至多种因素相互影响,但只要采取一定的设计和施工措施,很多裂缝是可以克服和控制的。

文章标题:浅析不同类型及不同原因产生的裂缝的相应防裂措施

转载请注明来自:http://www.sofabiao.com/fblw/ligong/jiaotongyunshu/16430.html

相关问题解答

SCI服务

搜论文知识网的海量职称论文范文仅供广大读者免费阅读使用! 冀ICP备15021333号-3