浅谈二次函数在高中阶段的应用

所属栏目:数学论文 发布日期:2011-06-10 16:42 热度:

  前言
  在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。
  一、进一步深入理解函数概念
  初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射ƒ:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为ƒ(x)=ax2+bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
  类型I:已知ƒ(x)=x2+2x+5,求ƒ(x+1)
  这里不能把ƒ(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
  类型Ⅱ:设ƒ(1+)=++1,求ƒ(x)
  这个问题理解为,已知对应法则ƒ下,定义域中的元素1+的象是++1,求定义域中元素X的象,其本质是求对应法则。
  一般有两种方法:
  (1)把所给表达式表示成1+的多项式。
  ƒ(1+)=++1=(++1)-(1+)+1=(1+)-(1+)+1且1+≠1,再用x代1+得ƒ(x)=x2-x+1(x≠1)
  (2)变量代换:它的适应性强,对一般函数都可适用。
  令t=1+,则x=(t≠1)
  ∴(t)=++1=t2-t+1从而ƒ(x)=x2-x+1(x≠1)
  二、二次函数的单调性,最值与图象。
  在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-b2a]及[-b2a,+∞)上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。
  类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。
  (1)y=2x2+|x|-5
  (2)y=|2x2-3|
  (3)=x2+2|x-1|-3
  这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。
  类型Ⅳ设ƒ(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。
  求:g(t)并画出y=g(t)的图象
  解:ƒ(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2
  当1∈[t,t+1]即0≤t≤1,g(t)=-2
  当t>1时,g(t)=ƒ(t)=t2-2t-1
  当t<0时,g(t)=ƒ(t+1)=t2-2
  t2-2,(t<0)
  g(t)=-2,(0≤t≤1)
  t2-2t-1,(t>1)
  首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。
  如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。
  三、二次函数的知识,可以准确反映学生的数学思维:
  类型Ⅴ:设二次函数ƒ(x)=ax2+bx+c(a>0)方程ƒ(x)-x=0的两个根x1,x2满足0<x1<x2<1a。
  (Ⅰ)当X∈(0,x1)时,证明X<ƒ(x)<x1。
  (Ⅱ)设函数ƒ(x)的图象关于直线x=x0对称,证明x0<x2。
  解题思路:
  本题要证明的是x<ƒ(x),ƒ(x)<x1和x0<x2,由题中所提供的信息可以联想到:①ƒ(x)=x,说明抛物线与直线y=x在第一象限内有两个不同的交点;②方程ƒ(x)-x=0可变为ax2+(b-1)x+1=0,它的两根为x1,x2,可得到x1,x2与a,b,c之间的关系式,因此解题思路明显有三条①图象法②利用一元二次方程根与系数关系③利用一元二次方程的求根公式,辅之以不等式的推导。现以思路②为例解决这道题:
  (Ⅰ)先证明x<ƒ(x),令ƒ(x)=ƒ(x)-x,因为x1,x2是方程ƒ(x)-x=0的根,ƒ(x)=ax2+bx+c,所以能ƒ(x)=a(x-x1)(x-x2)
  因为0<x1<x2,所以,当x∈(0,x1)时,x-x1<0,x-x2<0得(x-x1)(x-x2)>0,又a>0,因此ƒ(x)>0,即ƒ(x)-x>0.至此,证得x<ƒ(x)
  根据韦达定理,有x1x2=ca∵0<x1<x2<1a,c=ax1x2<x=ƒ(x1),又c=ƒ(0),∴ƒ(0)<ƒ(x1),根据二次函数的性质,曲线y=ƒ(x)是开口向上的抛物线,因此,函数y=ƒ(x)在闭区间[0,x1]上的最大值在边界点x=0或x=x1处达到,而且不可能在区间的内部达到,由于ƒ(x1)>ƒ(0),所以当x∈(0,x1)时ƒ(x)<ƒ(x1)=x1,
  即x<ƒ(x)<x1
  (Ⅱ)∵ƒ(x)=ax2+bx+c=a(x+-b2a)2+(c-),(a>0)
  函数ƒ(x)的图象的对称轴为直线x=-b2a,且是唯一的一条对称轴,因此,依题意,得x0=-b2a,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-b-1a,∵x2-1a<0,
  ∴x0=-b2a=12(x1+x2-1a)<x2,即x0=x2。
  二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。
  二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

文章标题:浅谈二次函数在高中阶段的应用

转载请注明来自:http://www.sofabiao.com/fblw/jiaoyu/shuxue/9350.html

相关问题解答

SCI服务

搜论文知识网的海量职称论文范文仅供广大读者免费阅读使用! 冀ICP备15021333号-3